Obstacles Uncovering System for Slender Pathways Using Unmanned Aerial Vehicles with Automatic Image Localization Technique

Abstract

In this study, unidentified flying machines are built with real-time monitoring in mid-course settings for obstacle avoidance in mind. The majority of the currently available methods are implemented as comprehensive monitoring systems, with significant success in monitored applications like bridges, railways, etc. So, the predicted model is developed exclusively for specific monitoring settings, as opposed to the broad conditions that are used by the current approaches. Also, in the design model, the first steps are taken by limiting the procedure to specific heights, and the input thrust that is provided for take up operation is kept to a minimum. Due to the improved altitudes, the velocity and acceleration units have been cranked up on purpose, making it possible to sidestep intact objects. In addition, Advanced Image Mapping Localization (AIML) is used to carry out the implementation process, which identifies stable sites at the correct rotation angle. Besides, Cyphal protocol integration improves the security of the data-gathering process by transmitting information gathered from sensing devices. The suggested system is put to the test across five different case studies, where the designed Unmanned aerial vehicle can able to detect 25 obstacles in the narrow paths in considered routs but existing approach can able to identify only 14 obstacle in the same routes.

Publication
International Journal of Computational Intelligence Systems
Shitharth Selvarajan
Shitharth Selvarajan
Lecturer in Cyber Security

My research interests include Cyber Security, Blockchain, Critical Infrastructure & Systems, Network Security & Ethical Hacking.