Optimization of IoT circuit for flexible optical network system with high speed utilization

Abstract

The term flexible optical network (FON) for high-speed utility with Internet of Things (IoT) assistance refers to a kind of network infrastructure that combines the advantages of FON with IoT technology to make it possible to provide high-speed and effective utility services. IoT applications are a feature of the modern era. In this study, we offered the notion that an optical network is employed to create high-speed IoT assistance. There are many other access network types accessible, but FON is used in this case which has greater efficiency and lower cost than Active Optical Network owing to the easy setup of components, making it highly popular in today’s society. Here, FON technologies are explained, and several ways of showing how they relate to the IoT are provided. Use case and requirements of IoT as well as viable solutions for high-speed utility and FON with Performance analysis of FON covers various aspects, such as average broadband speed (2022: 88 Mbps), IoT data access rate (LTE: 20 kb/s, WDM: 39 kb/s, VDSL2: 32 kb/s), FON factors (2022: Optical network equipment: 51, Optical line terminal: 64, Security: 76, Network management: 89), FON types with transmission speed (GFON: 32 Mbps, XGFON: 52 Mbps, TWDM-FON: 67 Mbps, SMA: 73 Mbps, HSMA: 92 Mbps), and energy consumption (Reach: 20, Data rate: 18, Power Rate: 10, Cost: 30) are used to increase the high efficiency of FON. If an IoT over FON architecture network of different nodes is employed, power consumption may be reduced while still using all available capabilities. We also go through the latest developments in optical devices, optical switching, and Optical Network (ON) technologies related to high-speed networks. Finally, we wrap up the study by discussing how these technologies have improved network intelligence and allowed deterministic content delivery across FON’s high-speed capabilities.

Publication
Optical and Quantum Electronics
Shitharth Selvarajan
Shitharth Selvarajan
Lecturer in Cyber Security

My research interests include Cyber Security, Blockchain, Critical Infrastructure & Systems, Network Security & Ethical Hacking.