Mathematical approach of fiber optics for renewable energy sources using general adversarial networks

Abstract

It is significantly more challenging to extend the visibility factor to a higher depth during the development phase of a communication system for subterranean places. Even if there are numerous optical fiber systems that provide the right energy sources for intended panels, the visibility parameter is not optimized past a certain point. Therefore, the suggested method looks at the properties of a fiber optic communication system that is integrated with a certain energy source while having external panels. A regulating state is established in addition to characteristic analysis by minimizing the reflection index, and the integration of the general adversarial network (GAN) optimizes both central and layer formations in exterior panels. Thus, the suggested technique uses the external noise factor to provide relevant data to the control center via fiber optic shackles. As a result, the normalized error is smaller, boosting the suggested method’s effectiveness in all subsurface areas. The created mathematical model is divided into five different situations, and the results are simulated using MATLAB to test the effectiveness of the anticipated strategy. Additionally, comparisons are done for each of the five scenarios, and it is found that the proposed fiber-optic method for energy sources is far more effective than current methodologies.

Publication
Frontiers in Ecology and Evolution
Shitharth Selvarajan
Shitharth Selvarajan
Lecturer in Cyber Security

My research interests include Cyber Security, Blockchain, Critical Infrastructure & Systems, Network Security & Ethical Hacking.